Inhibition of topoisomerase II by 8-chloro-adenosine triphosphate induces DNA double-stranded breaks in 8-chloro-adenosine-exposed human myelocytic leukemia K562 cells.

نویسندگان

  • Sheng-Yong Yang
  • Xiu-Zhen Jia
  • Li-Yan Feng
  • Shu-Yan Li
  • Guo-Shun An
  • Ju-Hua Ni
  • Hong-Ti Jia
چکیده

8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIalpha-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of gamma-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر آدنوزین ´5تری فسفات در القای آپوپتوز و مهار بیان ژن Survivin و واریانت پیرایشی ضد آپوپتوزی SUR-3B آن در سلول های K562

Introduction: Leukemia is a heterogeneous malignant disease in which progression at the level of CD34+ cells has a major impact in drug resistance and relapse. The multi-drug resistance gene product, P-glycoprotein is an inhibitor of apoptosis proteins (IAPs), such as Survivin that are expressed simultaneously with several putative drug resistance parameters in CD34+ leukemia cells. In fact, IA...

متن کامل

Interaction of several nucleoside triphosphate analogues and 10-hydroxycamptothecin with human DNA topoisomerases.

DNA topoisomerase I (Topo I) can exist in several different molecular weight forms in human leukemic cells. The Mr 98,000 form of Topo I was inhibited by several nucleoside triphosphates and their analogues at a 500 microM concentration in the order: dideoxy-GTP greater than 2-bromo-dATP greater than dideoxy-ATP greater than dideoxy-CTP greater than 2-fluoro-dATP greater than 2-chloro-dATP. The...

متن کامل

RNA-directed actions of 8-chloro-adenosine in multiple myeloma cells.

The purine analogue, 8-chloro-adenosine (8-Cl-Ado), induces apoptosis in a number of multiple myeloma (MM) cell lines. This ribonucleoside analogue accumulates as a triphosphate and selectively inhibits RNA synthesis without perturbing DNA synthesis. Cellular RNA is synthesized by one of three polymerases (Pol I, II, or III); thus, the inhibition of one or more RNA polymerases may be mediating ...

متن کامل

Etoposide Quinone Is a Covalent Poison of Human Topoisomerase IIβ

Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2-3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous st...

متن کامل

A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia.

We report for the first time the use of a selective small-molecule inhibitor of DNA repair to potentiate topoisomerase II (topo II) poisons, identifying DNA-dependent protein kinase (DNA-PK) as a potential target for leukemia therapy. Topo II poisons form cleavable complexes that are processed to DNA double-strand breaks (DSBs). DNA-PK mediates nonhomologous end joining (NHEJ). Inhibition of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical pharmacology

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 2009